A rocket with a total mass of 330,000 kg when fully loaded burns all 280,000 kg of fuel in 250 s. The engines generate 4.1 MN of thrust. What is this rocket's speed at the instant all the fuel has been burned if it is launched in deep space?

Respuesta :

Answer:

6900 m/s

Explanation:

The mass of the rocket is:

m = 330000 βˆ’ 280000 (t / 250)

m = 330000 βˆ’ 1120 t

Force is mass times acceleration:

F = ma

a = F / m

a = F / (330000 βˆ’ 1120 t)

Acceleration is the derivative of velocity:

dv/dt = F / (330000 βˆ’ 1120 t)

dv = F dt / (330000 βˆ’ 1120 t)

Multiply both sides by -1120:

-1120 dv = -1120 F dt / (330000 βˆ’ 1120 t)

Integrate both sides. Β Assuming the rocket starts at rest:

-1120 (v βˆ’ 0) = F [ ln(330000 βˆ’ 1120 t) βˆ’ ln(330000 βˆ’ 0) ]

-1120 v = F [ ln(330000 βˆ’ 1120 t) βˆ’ ln(330000) ]

1120 v = F [ ln(330000) βˆ’ ln(330000 βˆ’ 1120 t) ]

1120 v = F ln(330000 / (330000 βˆ’ 1120 t))

v = (F / 1120) ln(330000 / (330000 βˆ’ 1120 t))

Given t = 250 s and F = 4.1Γ—10⁢ N:

v = (4.1Γ—10⁢ / 1120) ln(330000 / (330000 βˆ’ 1120Γ—250))

v = 6900 m/s