Respuesta :
Answer:
Part 1) [tex]r=3.5\%[/tex] Â
Part 2) [tex]t=6\ years[/tex]
Part 3) [tex]21.9\ ft[/tex]
Step-by-step explanation:
Part 1) we know that
The formula to calculate continuously compounded interest is equal to
[tex]A=P(e)^{rt}[/tex] Â
where Â
A is the Final Investment Value Â
P is the Principal amount of money to be invested Â
r is the rate of interest in decimal Â
t is Number of Time Periods Â
e is the mathematical constant number
Let
x -----> amount of money to be invested
2x ---> Final Investment Value
we have Â
[tex]t=20\ years\\ P=\$x\\A=\$2x\\r=?[/tex] Â
substitute in the formula above Â
[tex]2x=x(e)^{20r}[/tex] Â
[tex]2=(e)^{20r}[/tex] Â
Apply ln both sides
[tex]ln(2)=ln[(e)^{20r}][/tex] Â
[tex]ln(2)=(20r)ln(e)[/tex] Â
[tex]ln(2)=(20r)[/tex] Â
[tex]0.693=(20r)[/tex] Â
[tex]r=0.693/20[/tex] Â
[tex]r=0.035[/tex] Â
[tex]r=3.5\%[/tex] Â
Part 2) we know that
The formula to calculate continuously compounded interest is equal to
[tex]A=P(e)^{rt}[/tex] Â
where Â
A is the Final Investment Value Â
P is the Principal amount of money to be invested Â
r is the rate of interest in decimal Â
t is Number of Time Periods Â
e is the mathematical constant number
Let
x -----> amount of money to be invested
2x ---> Final Investment Value
we have Â
[tex]t=?\ years\\ P=\$x\\A=\$2x\\r=0.126[/tex] Â
substitute in the formula above Â
[tex]2x=x(e)^{0.126t}[/tex] Â
[tex]2=(e)^{0.126t}[/tex] Â
Apply ln both sides
[tex]ln(2)=ln[(e)^{0.126t}][/tex] Â
[tex]ln(2)=(0.126t)ln(e)[/tex] Â
[tex]ln(2)=(0.126t)[/tex] Â
[tex]0.693=(0.126t)[/tex] Â
[tex]t=0.693/0.126[/tex] Â
[tex]t=5.5=6\ years[/tex]
Part 3) we have
[tex]f(x)=18.4+2.5ln(x+1)[/tex]
where
f(x) -----> is the long jump record in feet
x -----> the number of years since the school was opened
so
For x=3 years
substitute
[tex]f(3)=18.4+2.5ln(3+1)[/tex]
[tex]f(3)=18.4+2.5ln(4)[/tex]
[tex]f(3)=18.4+2.5(1.386)[/tex]
[tex]f(3)=21.9\ ft[/tex]