Answer: 104.026 m/s=374.49 km/h
Explanation:
When a body or object falls, basically two forces act on it: Â
1. The force of air friction, also called "drag force" [tex]D[/tex]: Â
[tex]D={C}_{d}\frac{\rho V^{2} }{2}A[/tex] (1)
Where: Â
[tex]C_ {d}=0.7[/tex] is the drag coefficient Â
[tex]\rho=1.21 kg/m^{3}[/tex] is the density of the fluid (air in this case)
[tex]V[/tex] is the velocity Â
[tex]A=0.17 m^{2}[/tex] is the transversal area of the object Â
So, this force is proportional to the transversal area of ​​the falling element and to the square of the velocity. Â
2. Its weight due to the gravity force [tex]W[/tex]: Â
[tex]W=m.g[/tex] (2)
Where: Â
[tex]m=79.5 kg[/tex] is the mass of the object
[tex]g=9.8 m/s^{2}[/tex] is the acceleration due gravity Â
[tex]D=W[/tex] (3)
[tex]{C}_{d}\frac{\rho V^{2} }{2}A=m.g[/tex] (4)
[tex]V=\sqrt{\frac{2m.g}{\rho A{C}_{d}}}[/tex] (5) This is the terminal velocity
Substituting the known values in (5):
[tex]V=\sqrt{\frac{2(79.5 kg)(9.8 m/s^{2})}{(1.21 kg/m^{3})(0.17m^{2}){(0.7)}}[/tex] (6)
Then:
[tex]V=104.026 m/s[/tex] This is the final velocity in meters per second
Now, let's find the final velocity in kilometers per hour, knowing [tex]1 km=1000 m[/tex] and [tex]1 h=3600 s[/tex]:
[tex]V=104.026 \frac{m}{s} (\frac{1 km}{1000 m})(\frac{3600 s}{1 h})=374.49 km/h[/tex] This is the final velocity in kilometers per hour.