Respuesta :
Answer:
(a)  aâ:  jogger  acceleration= 1.5 m/s²
(b)  aâ:  car  acceleration = 1.5 m/s²
(b) Â d= 76m : the car travels 76 meters longer than the jogger during the 2 seconds
Explanation:
we apply uniformly accelerated motion formulas:
vf= vâ+at Formula (1)
vf²=vâ²+2*a*d Formula (2)
d= vât+ (1/2)*a*t² Formula (3)
Where: Â
d:displacement in meters (m) Â
t : time in seconds (s)
vâ: initial speed in m/s Â
vf: final speed in m/s Â
a: acceleration in m/s²
Nomenclature
dâ:  jogger displacement  Â
tâ : Â jogger time
vââ: Â jogger initial speed
vfâ:  jogger  final speed
aâ:  jogger  acceleration
dâ: car displacement  Â
tâ : car  time
vââ: car  initial speed
vfâ:  car  final speed
aâ:  car  acceleration
Data
vââ = 0
vfâ = 3 m/s
tâ =2.0 s
vââ = 38.0m/s
vfâ = 41.0 m/s
tâ = 2.0 s
Problem development
(a) Find the acceleration (magnitude only) of the jogger.
We apply the formula (1) for calculate acceleration :
vfâ= vââ+aâ*tâ
3 = 0 +(aâ)*(2)
aâ= (3)/(2)
aâ= 1.5 m/s²
(b) Determine the acceleration (magnitude only) of the car.
We apply the formula (1) for calculate acceleration :
vfâ= vââ+aâ*tâ
41 = 38 +(aâ)*(2)
aâ= (41 - 38)/(2)
aâ= 3 /2
aâ= 1.5 m/s²
(c) Does the car travel farther than the jogger during the 2.0 s? If so, how much farther?
We apply the formula (1) for calculate distance :
dâ= vââ*tâ+ (1/2)*aâ*tâ²= 0+ (1/2)*(1.5) *(2)² = 3 m
dâ= vââ*tâ+ (1/2)*aâ*tâ² =38*(2)+ (1/2)*(1.5) *(2)²= 79 m
d= 79 m-3 m
d= 76m : the car travels 76 meters longer than the jogger during the 2 seconds