Respuesta :
Answer:
11 slips
Step-by-step explanation:
A perfect square is a positive integer that is the square of another integer. For example, 25 is a perfect square of 5. See the calculation below
.
[tex]5^{2} = 5*5\\5^{2} = 25[/tex]
There is a rule that should be kept in mind
1. When two perfect squares are multiplied by each other (e.g. 4 * 9), the result is a perfect square ([tex]36 = 6^{2}[/tex])
Let's identify the combination of numbers that result in perfect square, when multiplied with each other. These combinations are as follows,
• 1*4, 1*9, 1*16 Â
• 2*8 Â
• 3*12 Â
• 4*9, 4*16 Â
• 9*16 Â
From the list of numbers 1, 4, 9 and 16 are already perfect square e.g. [tex]2^{2} = 4, 3^{2} = 9[/tex]. If they are multiplied by each other, the result will also be a perfect square. Let’s assume that our first number is 1. Now we can't have any of the three numbers (except for 1), mentioned above. This rule out these three numbers. Â
Next, from 2, 8, 3 and 12 we can only draw two numbers. e.g. if we take 2, we can’t take 8 as it will give a perfect square. Same goes with 3 and 12. Hence from these four numbers we can discard two of them.
We discarded three numbers initially and two now. Therefore, out of 16 slipds we can draw a maximum of 11 slips without obtaining a product that is a perfect square.