Respuesta :
Answer:
vi = 4.77 ft/s
Explanation:
Given:
- The radius of the surface R = 1.45 ft
- The Angle at which the the sphere leaves
- Initial velocity vi
- Final velocity vf
Find:
Determine the sphere's initial speed.
Solution:
- Newton's second law of motion in centripetal direction is given as:
             m*g*cos(θ) - N = m*v^2 / R
Where, m: mass of sphere
       g: Gravitational Acceleration
       θ: Angle with the vertical
       N: Normal contact force.
- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:
             m*g*cos(θ) - 0 = m*vf^2 / R
             g*cos(θ) = vf^2 / R  Â
             vf^2 = R*g*cos(θ)
             vf^2 = 1.45*32.2*cos(34)
            vf^2 = 38.708 ft/s
- Using conservation of energy for initial release point and point where sphere leaves cylinder:
             ΔK.E = ΔP.E
             0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))
             ( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))
             vi^2 =  vf^2 - 2*g*R*( 1 - cos(θ))
             vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))
             vi^2 = 22.744
              vi = 4.77 ft/s