Explanation:
(a) Â Formula for critical stress is as follows.
     [tex]\sigma_{c} = \frac{k_{IC}}{\tau \sqrt{\pi \times a}}[/tex]
Here, Â [tex]K_{IC}[/tex] = 54.8
     [tex]\tau[/tex] = 0.99
      a = 0.8 mm = [tex]0.8 \times 10^{-3}[/tex] m
Putting the given values into the above formula as follows.
     [tex]\sigma_{c} = \frac{k_{IC}}{\tau \sqrt{\pi \times a}}[/tex]
            = [tex]\frac{54.8}{0.99 \times \sqrt{3.14 \times 0.8 \times 10^{-3}}}[/tex]
            = 1107 MPa
Hence, value of critical stress is 1107 MPa.
(b) Â Â Applied stress value is given as 1205 MPa and since it is more than the critical stress (1107 MPa) as a result, a fracture will occur.