Respuesta :
Answer:
(a) P(X = 0) = 1/3
(b) P(X = 1) = 2/9
(c) P(X = −2) = 1/9
(d) P(X = 3) = 0
(a) P(Y = 0) = 0
(b) P(Y = 1) = 1/3
(c) P(Y = 2) = 1/3
Step-by-step explanation:
Given:
- Two 3-sided fair die.
- Random Variable X_1 denotes the number you get for rolling 1st die.
- Random Variable X_2 denotes the number you get for rolling 2nd die.
- Random Variable X = X_2 - X_1.
Solution:
- First we will develop a probability distribution of X such that it is defined by the difference of second and first roll of die.
- Possible outcomes of X : { - 2 , -1 , 0 ,1 , 2 }
- The corresponding probabilities for each outcome are:
         ( X = -2 ):  { X_2 = 1 , X_1 = 3 }
         P ( X = -2 ):  P ( X_2 = 1 ) * P ( X_1 = 3 )
                 :  ( 1 / 3 ) * ( 1 / 3 )
                 : ( 1 / 9 )
 Â
         ( X = -1 ):  { X_2 = 1 , X_1 = 2 } + { X_2 = 2 , X_1 = 3 }
         P ( X = -1 ):  P ( X_2 = 1 ) * P ( X_1 = 3 ) + P ( X_2 = 2 ) * P ( X_1 = 3)
                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )
                 : ( 2 / 9 )
    Â
    ( X = 0 ):  { X_2 = 1 , X_1 = 1 } + { X_2 = 2 , X_1 = 2 } +  { X_2 = 3 , X_1 = 3 }
    P ( X = -1 ):P ( X_2 = 1 )*P ( X_1 = 1 )+P( X_2 = 2 )*P ( X_1 = 2)+P( X_2 = 3 )*P ( X_1 = 3)
                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )
                 : ( 3 / 9 ) = ( 1 / 3 )
   Â
          ( X = 1 ):  { X_2 = 2 , X_1 = 1 } + { X_2 = 3 , X_1 = 2 }
         P ( X = 1 ):  P ( X_2 = 2 ) * P ( X_1 = 1 ) + P ( X_2 = 3 ) * P ( X_1 = 2)
                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )
                 : ( 2 / 9 )
          ( X = 2 ):  { X_2 = 1 , X_1 = 3 }
         P ( X = 2 ):  P ( X_2 = 3 ) * P ( X_1 = 1 )
                  :  ( 1 / 3 ) * ( 1 / 3 )
                  : ( 1 / 9 )         Â
- The distribution Y = X_2,
             P(Y=0) = 0
             P(Y=1) =  1/3
             P(Y=2) = 1/ 3
- The probability for each number of 3 sided die is same = 1 / 3.