(1) A - B
(2) B - C
(3) - A + B - C
(4) 3A - 2C
(5) - 2A + 3B - C
(6) 2A - 3 (B - C)
Answer:
(1) ย (3,-5,-4)
(2) (-5, 4, 0)
(3) (-6, 4, 3)
(4) (-3, -2, -11)
(5) (-11, 14, 8)
(6) (17, -12, -6)
Explanation:
Aโ =(1,0,โ3)
Bโ =(โ2,5,1)
Cโ =(3,1,1)
Vector additions and subtraction are done on a component by component basis, that is, only data from component รฎ can be added to or subtracted from another Vector's component รฎ. And so on for components j and k.
1) (A - B) = (1,0,โ3) - (โ2,5,1) = (1-(-2), 0-5, -3-1) = (3,-5,-4)
2) ย (B - C) = (โ2,5,1) - (3,1,1) = (-2-3, 5-1, 1-1) = (-5, 4, 0)
3) -A + B - C = -(1,0,โ3) + (โ2,5,1) - (3,1,1) = (-1-2-3, 0+5-1, 3+1-1) = (-6, 4, 3)
4) 3A - 2C = 3(1,0,โ3) - 2(3,1,1) = (3,0,-9) - (6,2,2) = (3-6, 0-2, -9-2) = (-3, -2, -11)
5) -2A + 3B - C = -2(1,0,โ3) + 3(โ2,5,1) - (3,1,1) = (-2,0,6) + (-6,15,3) - (3,1,1) = (-2-6-3, 0+15-1, 6+3-1) = (-11, 14, 8)
6) 2A - 3 (B - C) = 2(1,0,โ3) - 3[(โ2,5,1) - (3,1,1)] = (2,0,-6) - 3(-5,4,0) = (2+15, 0-12, -6-0) = (17, -12, -6)