Answer:
P [  1689  ≤  X  ≤  2267 ]  = 54,88 %
Step-by-step explanation:
Normal Distribution
Mean     μ₀  =  1730
Standard Deviation    σ  = 257
We need to calculate  z scores for the values  1689   and    2267
We apply formula for z scores
z =  ( X -  μ₀ ) /σ
X = 1689 Â Â then
z = (1689 - 1730)/ 257    ⇒ z = - 41 / 257
z  = -  0.1595
And from z table we get  for  z =  - 0,1595
We have to interpolate
    - 0,15      0,4364
    - 0,16      0,4325
Δ  =  0.01      0.0039
0,1595 Â - Â 0,15 Â = Â 0.0095
By rule of three
0,01 Â Â Â Â Â Â Â Â Â 0,0039
0,0095         x ??    x  =  0.0037
And   0,4364  -  0.0037  = 0,4327
Then   P [ X ≤ 1689 ]  =  0.4327   or   P [ X ≤ 1689 ]  = 43,27 %
And for the upper limit  2267  z  score will be
z  =  ( X - 1730 ) / 257    ⇒  z =  537 / 257
z  =  2.0894
Now from z table  we find  for score  2.0894
We interpolate and assume  0.9815
P [ X ≤ 2267 ]  =  0,9815
Ths vale already contains th value of  P [ X ≤ 1689 ]  =  0.4327
Then we subtract  to get   0,9815  -  0,4327  = 0,5488
Finally
P [ 1689  ≤  X  ≤  2267 ]  =  0,5488  or  P [  1689  ≤  X  ≤  2267 ]  = 54,88 %