Respuesta :
The values of (x,y)=(4,4). In terms of x, the value y(x)=8-x, If the given equation is [tex]x-y=0[/tex] and [tex]x+y=8[/tex].
Step-by-step explanation:
The given is,
               [tex]x-y=0[/tex]...............................(1)
               [tex]x+y=8[/tex]...............................(2)
Step:1
     Solution can be obtained by Elimination method,
     Equation (1) is multiplied by (-1)      ( Eqn (1) × -1 )
               [tex]-x+y=0[/tex]..............................(3)
     Substrate the equation (1) and equation (3),
               [tex]-x+y=0[/tex]
                [tex]x+y=8[/tex]
     ( - )
     [tex](-x-x)+(y-y)=(0-8)[/tex]
               [tex](-2x)=-8[/tex]
                [tex]-2x = -8[/tex]
     we can cancel the minus because it is available in both sides,
                 [tex]2x=8[/tex]
                  [tex]x = \frac{8}{2}[/tex]
                   x = 4
    From the value of x, Equation (2) becomes,
               [tex]x+y=8[/tex]
                [tex]4+y=8[/tex]
                   [tex]y = 8-x[/tex]   (Value of y in terms of x)
    Where, x = 4
                   [tex]y = 8-4[/tex]    Â
                   [tex]y =4[/tex]
Step:2
    Check for solution,
               [tex]x+y=8[/tex].....................................(2)
    Substitute the values of x and y,
               4 + 4 = 8
                  8 = 8
Result:
     The values of (x,y)=(4,4). In terms of x, the value y(x)=8-x, where x=4. If the given equation is [tex]x-y=0[/tex] and [tex]x+y=8[/tex].
    Â
