Answer:
P = 1 (14,045 ± 0.03 )  k gm/s
Explanation:
In this exercise we are asked about the uncertainty of the momentum of the two carriages
      Δ (Pₓ / Py) =?
 Let's start by finding the momentum of each vehicle
car X
    Pₓ = m vₓ
    Pₓ = 2.34 2.5
    Pₓ = 5.85 kg m
car Y
    Py = 2,561 3.2
    Py = 8,195 kgm
How do we calculate the absolute uncertainty at the two moments?
     ΔPₓ = m Δv + v Δm
     ΔPₓ = 2.34 0.01 + 2.561 0.01
     ΔPₓ = 0.05 kg m
     Δ[tex]P_{y}[/tex] = m Δv + v Δm
     ΔP_{y} = 2,561 0.01+ 3.2 0.001
     ΔP_{y} = 0.03 kg m
now we have the uncertainty of each moment
     P = Pₓ / [tex]P_{y}[/tex]
     ΔP = ΔPₓ/P_{y} + Pₓ ΔP_{y} / P_{y}²
     ΔP = 8,195 0.05 + 5.85 0.03 / 8,195²
     ΔP = 0.006 + 0.0026
     ΔP = 0.009 kg m
The result is
      P = 14,045 ± 0.039 = (14,045 ± 0.03 )  k gm/s