Respuesta :
Answer:
a
 [tex]KE = 7.17 *10^{7} \ J[/tex]
b
 [tex]t = 6411.09 \ s[/tex]
Explanation:
From the question we are told that
  The radius of the flywheel is  [tex]r = 1.50 \ m[/tex]
   The mass of the flywheel is [tex]m = 430 \ kg[/tex]
     The rotational speed of the flywheel is [tex]w = 5,200 \ rev/min = 5200 * \frac{2 \pi }{60} =544.61 \ rad/sec[/tex]
   The power supplied by the motor is  [tex]P = 15.0 hp = 15 * 746 = 11190 \ W[/tex]
    Â
   Generally the moment of inertia of the flywheel is  mathematically represented as
    [tex]I = \frac{1}{2} mr^2[/tex]
substituting values
    [tex]I = \frac{1}{2} ( 430)(1.50)^2[/tex]
    [tex]I = 483.75 \ kgm^2[/tex]
The kinetic energy that is been stored is Â
    [tex]KE = \frac{1}{2} * I * w^2[/tex]
substituting values
    [tex]KE = \frac{1}{2} * 483.75 * (544.61)^2[/tex]
    [tex]KE = 7.17 *10^{7} \ J[/tex]
Generally power is mathematically represented as
     [tex]P = \frac{KE}{t}[/tex]
=> Â Â Â [tex]t = \frac{KE}{P}[/tex]
substituting the value
    [tex]t = \frac{7.17 *10^{7}}{11190}[/tex]
    [tex]t = 6411.09 \ s[/tex]