Respuesta :
Answer:
i [tex]\to[/tex] a
  [tex]n = 96040000[/tex]
i [tex]\to[/tex] b
  [tex]n_1 =24010000[/tex]
i [tex]\to[/tex] c
  [tex]n_2 =41602500[/tex]
ii[tex]\to[/tex]a
   [tex]E = 58.16[/tex]
ii[tex]\to[/tex]b
  [tex]291.84 < \mu < 408.16[/tex]\
ii[tex]\to[/tex]c
  There is insufficient evidence to conclude that the analyst is right because the population mean fee by the analyst does not fall within the confidence interval
Step-by-step explanation:
From the question we are told that
   The sample size is [tex]n = 8[/tex]
   The sample mean is  [tex]\= x = \$ 350[/tex]  Â
   The sample standard deviation is  [tex]\$ 100[/tex]
Considering question i
  i [tex]\to[/tex] a
     At  [tex]E = 0.02[/tex] Â
given that the confidence level is 95% Â = Â 0.95
     the level of significance would be  [tex]\alpha =1-0.95 = 0.05[/tex]
The critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table is Â
    [tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]
So  the sample size is mathematically evaluated as
      [tex]n = [ \frac{Z_{\frac{\alpha }{2} } * \sigma }{E} ]^2[/tex]
=> Â Â Â Â [tex]n =[ \frac{ 1.96 * 100}{ 0.02} ]^2[/tex]
=> Â Â Â Â [tex]n = 96040000[/tex]
 i [tex]\to[/tex] b
 At  [tex]E_1 = 0.04[/tex]   and  confidence level  = 95%  =>  [tex]\alpha_1 = 0.05[/tex]  =>  [tex]Z_{\frac{\alpha_1 }{2} } = 1.96[/tex]
       [tex]n_1 = [ \frac{Z_{\frac{\alpha_2 }{2} } * \sigma }{E_1} ]^2[/tex]
=> Â Â Â Â Â [tex]n_1 =[ \frac{ 1.96 * 100}{ 0.04} ]^2[/tex]
=> Â Â Â Â Â [tex]n_1 =24010000[/tex]
 i [tex]\to[/tex] c
    At  [tex]E_2 = 0.04[/tex]   confidence level  = 99%  =>   [tex]\alpha_2 = 0.01[/tex]
The critical value of  [tex]\frac{\alpha_2 }{2}[/tex] from the normal distribution table is Â
    [tex]Z_{\frac{ \alpha_2 }{2} } = 2.58[/tex]
=> Â Â [tex]n_2 = [ \frac{Z_{\frac{\alpha_2 }{2} } * \sigma }{E_2} ]^2[/tex]
=> Â Â [tex]n_2 =[ \frac{ 2.58 * 100}{ 0.04} ]^2[/tex]
=> Â Â [tex]n_2 =41602500[/tex]
Considering ii
Given that the level of significance is  [tex]\alpha = 0.10[/tex]
Then the critical value  of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table is Â
      [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
Generally the margin of error is mathematically represented as
     [tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
     [tex]E = 1.645 * \frac{100 }{\sqrt{8} }[/tex]
     [tex]E = 58.16[/tex]
Generally the 90% confidence interval is mathematically evaluated as
     [tex]\= x - E < \mu < \= x + E[/tex]
=> Â Â Â [tex]350 - 58.16 < \mu < 350 + 58.16[/tex]
=> Â Â [tex]291.84 < \mu < 408.16[/tex]
So the interpretation is that there is 90% confidence that the mean  fee charged to H&R Block customers last year is in the interval .So there is insufficient evidence to conclude that the analyst is right because the population mean fee by the analyst does not fall within the confidence interval.