Answer:
a) Rectangle of maximum area ( given perimeter p ) is
A= x²   That means the rectangle of maximum area,  is a square
Step-by-step explanation:
The equation:  A (x,y) = x*y  is the area of a rectangle  ( to maximize)
Subject to:  p  = 2*x + 2*y   or  g(x,y) =  2*x + 2*y -p
Now
A(x,y) = x*y     δA/δx  = y      δA/δy  = x
And
g(x,y) = Â 2*x + 2*y -p
δg(x,y)/δx = 2    and   δg(x,y)/δy  = 2
Matching respective partial derivatives we get a system of equation
δA/δx  = y  = λ *  = δg(x,y)/δx = 2 Â
y = 2*λ
δA/δy  = x  = 2*λ
The system of equations is:
y = 2*λ
x  = 2*λ
And 2*x + 2*y -p = 0
p = 2*x +2*y
So  x = y    p is equal either  4*x  or  4*y
Solving for λ