Answer:
A Â Â Â Â Em
   1      ½ K
   2     ½ k 4 = 2k
   3     ½ k 9 = 4.5 k
   4     ½ k 16 = 8k
Explanation:
The total mechanical energy of a simple harmonic movement is constant in time, let's look for the energy at one end of the movement, where the velocity of the body is zero.
    Em = U = ½ k x²
at the end x = A
    Em = ½ k A²
Let's build a table for the energy and as a function of the amplitudes of the movement
   A     Em
   1      ½ K
   2     ½ k 4 = 2k
   3     ½ k 9 = 4.5 k
   4     ½ k 16 = 8k
as a function of the lowest energy
   1       Eo = ½ k
   2      4Eo
   3      9 Eo
   4      16Eo