Respuesta :
Answer:
F = 3.6 kN, direction is 9.6Âș to the North - East
Explanation:
The force is a vector, so one method to find the solution is to work with the components of the vector as scalars and then construct the resulting vector.
Let's use trigonometry to find the component of the forces, let's use a reference frame where the x-axis coincides with the East and the y-axis coincides with the North.
Wind
X axis
     Fâ = 2.50 kN
Tide
     cos 30 = Fââ / Fâ
     sin 30 = F_{2y} / Fâ
     Fââ = Fâ cos 30
     F_{2y} = Fâ sin 30
     Fââ = 1.20cos 30 = 1.039 kN
     F_{2y} = 1.20 sin 30 = 0.600 kN
the resultant force is
X axis
    Fâ = Fââ + Fââ
    Fâ = 2.50 +1.039
    Fâ = 3,539 kN
    F_y = F_{2y}
    F_y = 0.600
to find the vector we use the Pythagorean theorem
     F = [tex]\sqrt{F_x^2 +F_y^2}[/tex]
     F = [tex]\sqrt{ 3.539^2 + 0.600^2 }[/tex]
     F = 3,589 kN
the address is
     tan Ξ = F_y / Fâ
     Ξ = tanâ»Âč [tex]\frac{F_y}{F_x}[/tex]
     Ξ = tanâ»Âč  [tex]\frac{0.6}{3.539}[/tex]0.6 / 3.539
     Ξ = 9.6Âș
the resultant force to two significant figures is
     F = 3.6 kN
the direction is 9.6Âș to the North - East