Answer:
Jβ(β3, 5) β Jββ²(β7, 12) β Jββ³(β7, β12);
Kβ(β1, 0) β Kββ²(β5, 7)β Kββ³(β5, β7);
Lβ(8, β4)β Lββ²(4, 3)β Lββ³(4, β3)
Step-by-step explantion
Use the translation vector <β4, 7> Β to determine the rule for translation of the coordinates: (x,y)β(x+(β4),y+7).
Apply the rule to translate vertices J(β3,5), K(β1,0) and L(8,β4).
J(β3,5)β(β3+(β4),5+7)βJ'(β7,12).
K(β1,0)β(β1+(β4),0+7)βK'(β5,7).
L(8,β4)β(8+(β4),β4+7)βL'(4,3).
To apply the reflection across x-axis use the rule for reflection: (x,y)β(x,βy).
Apply the reflection rule to the vertices of β³J'K'L'.
J'(β7, 12)βJ''(β7,β12).
K'(β5,7)βK''(β5,β7).
L'(4,3)βL''(4,β3).
Therefore,
J(β3,5)βJ'(β7,12)βJ''(β7,β12)K(β1,0)βK'(β5,7)βK''(β5,β7)
L(8,β4)βL'(4, 3)βL''(4,β3)
represents the translation of β³JKL along vector <β4, 7> Β and its reflection across the x-axis.