β–³JKL has vertices J(βˆ’3,5), K(βˆ’1,0) and L(8,βˆ’4). Which of the following represents the translation of β–³JKL along vector <βˆ’4, 7> and its reflection across the x-axis?

Answers:
J (βˆ’3, 5) β†’ J β€²(1, βˆ’2) β†’ J β€³(βˆ’1, βˆ’2);
K (βˆ’1, 0) β†’ K β€²(3, βˆ’7)β†’ K β€³(βˆ’3, βˆ’7);
L (8, βˆ’4)β†’ L β€²(12, βˆ’11)β†’ L β€³(βˆ’12, βˆ’11)


J (βˆ’3, 5) β†’ J β€²(1, βˆ’2) β†’ J β€³(1, 2);
K (βˆ’1, 0) β†’ K β€²(3, βˆ’7)β†’ K β€³(3, 7);
L (8, βˆ’4)β†’ L β€²(12, βˆ’11)β†’ L β€³(12, 11)


J (βˆ’3, 5) β†’ J β€²(βˆ’7, 12) β†’ J β€³(7, 12);
K (βˆ’1, 0) β†’ K β€²(βˆ’5, 7)β†’ K β€³(5, 7);
L (8, βˆ’4)β†’ L β€²(4, 3)β†’ L β€³(βˆ’4, 3)


J (βˆ’3, 5) β†’ J β€²(βˆ’7, 12) β†’ J β€³(βˆ’7, βˆ’12);
K (βˆ’1, 0) β†’ K β€²(βˆ’5, 7)β†’ K β€³(βˆ’5, βˆ’7);
L (8, βˆ’4)β†’ L β€²(4, 3)β†’ L β€³(4, βˆ’3)

Respuesta :

Answer:

Jβ€Š(βˆ’3, 5) β†’ Jβ€Šβ€²(βˆ’7, 12) β†’ Jβ€Šβ€³(βˆ’7, βˆ’12);

Kβ€Š(βˆ’1, 0) β†’ Kβ€Šβ€²(βˆ’5, 7)β†’ Kβ€Šβ€³(βˆ’5, βˆ’7);

Lβ€Š(8, βˆ’4)β†’ Lβ€Šβ€²(4, 3)β†’ Lβ€Šβ€³(4, βˆ’3)

Step-by-step explantion

Use the translation vector <βˆ’4, 7> Β to determine the rule for translation of the coordinates: (x,y)β†’(x+(βˆ’4),y+7).

Apply the rule to translate vertices J(βˆ’3,5), K(βˆ’1,0) and L(8,βˆ’4).

J(βˆ’3,5)β†’(βˆ’3+(βˆ’4),5+7)β†’J'(βˆ’7,12).

K(βˆ’1,0)β†’(βˆ’1+(βˆ’4),0+7)β†’K'(βˆ’5,7).

L(8,βˆ’4)β†’(8+(βˆ’4),βˆ’4+7)β†’L'(4,3).

To apply the reflection across x-axis use the rule for reflection: (x,y)β†’(x,βˆ’y).

Apply the reflection rule to the vertices of β–³J'K'L'.

J'(βˆ’7, 12)β†’J''(βˆ’7,βˆ’12).

K'(βˆ’5,7)β†’K''(βˆ’5,βˆ’7).

L'(4,3)β†’L''(4,βˆ’3).

Therefore,

J(βˆ’3,5)β†’J'(βˆ’7,12)β†’J''(βˆ’7,βˆ’12)K(βˆ’1,0)β†’K'(βˆ’5,7)β†’K''(βˆ’5,βˆ’7)

L(8,βˆ’4)β†’L'(4, 3)β†’L''(4,βˆ’3)

represents the translation of β–³JKL along vector <βˆ’4, 7> Β and its reflection across the x-axis.