Values of c and d make the equation true are c=6, d=2
Equations
                [tex]\sqrt[3]{162x^{c}y^{5} } = 3x^{2} y^{3} \sqrt[3]{6y^{d} }[/tex]
                [tex](\sqrt[3]{162x^{c}y^{5} })^{3} = (3x^{2} y^{3} \sqrt[3]{6y^{d} })^{3}[/tex]
                 [tex]{162x^{c}y^{5} } = (3x^{2} y^{3} \sqrt[3]{6y^{d} })^{3}[/tex]
                 [tex]{162x^{c}y^{5} } = 27x^{6} y^{3} ({6y^{d})[/tex]
                   [tex]{x^{c}y^{5} } = x^{6} y^{3} ({y^{d})[/tex]
                   [tex]{x^{c}y^{5} } = x^{6} y^{3+d}[/tex]
                  c = 6
                  d = 2
To learn more about equations from the given link
https://brainly.com/question/14751707
#SPJ4